Gambling On Genes To Build A Better Cow

  

GamblingBuild

Gene Transfers May Build A Better Cow. A mouse that produces rabbit beta-globin protein, of course. That may not sound like a particularly useful accomplishment, but Genetic Engineering Inc. Of Northglenn, Colo., expects to use the gene-transferring technique to produce cows that will grow faster, produce more milk and beef, and be more resistant to disease. Aug 02, 2000  Aug. 2, 2000 - Why can some people occasionally buy a lottery ticket or play a slot machine and suffer no ill effects beyond losing a few bucks, while others become so.

  1. American Psychiatric Association. (1980). Diagnostic and Statistical Manual of Mental Disorders, Third Edition. Washington, D.C.; American Psychiatric Association.Google Scholar
  2. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text-Revision. Washington, DC; American Psychiatric Association.Google Scholar
  3. Bergh C., Eklund T., Sodersten P., Nordin C. (1997). Altered dopamine function in pathological gambling. Psychological Medicine; 27(2): 473-475.Google Scholar
  4. Blanco C., Oresanz-Muñoz L., Blanco-Jerez C., Sáiz-Ruiz J. (1996). Pathological gambling and platelet MAO activity: A psychobiological study. The American Journal of Psychiatry; 153: 119-121.Google Scholar
  5. Blanco C., Ibáñez A., Sáiz-Ruiz J., Blanco-Jerez C., Nunes E. V. (2000). Epidemiology, Pathophysiology and Treatment of Pathological Gambling. CNS Drugs; 13(6): 397-407.Google Scholar
  6. Blanco C., Moreyra P., Nunes E. V., Sáiz-Ruiz J., Ibáñez A. (2001). Pathological Gambling: Addiction or Compulsión?. Seminars in Clinical Neuropsychiatry, 6(3): 167-176.Google Scholar
  7. Blum K., Sheridan P. J., Wood R. C., Braverman E. R., Chen T. J., Comings D. E. (1995). Dopamine D2 receptor gene variants: Association and linkage studies in impulsive-addictive-compulsive behaviour. Pharmacogenetics; 5: 121-141.Google Scholar
  8. Carrasco J. L., Sáiz-Ruiz J., Hollander E., Cesar J., Lopez-Ibor J. J. Jr. (1994). Low platelet monoamine oxidase activity in pathological gambling. Acta Psychiatr Scand; 90: 427-431.Google Scholar
  9. Comings D. E., Rosenthal R. J., Lesieur H. R., et al. (1996) A study of the dopamine D2 receptor gene in pathological gambling. Pharmacogenetics; 6: 223-234.Google Scholar
  10. Comings D. E., Gade R., Wu S., et al. (1997). Studies of the potential role of the dopamine D1 receptor gene in addictive behaviors. Molecular Psychiatry; 2: 44-56.Google Scholar
  11. DeCaria C. M., Hollander E., Grossman R., Wong C. M., Mosovich S. A., Cherkasky S. (1996). Diagnosis, Neurobiology and Treatment of Pathological Gambling. The Journal of Clinical Psychiatry; 57 (suppl 8): 80-84.Google Scholar
  12. DeCaria C., Hollander E., Nora R., Stein D., Simeon D., Cohen I. (1997). Gambling: Biological/genetic, treatment, government, and gambling concerns: Neurobiology of pathological gambling. Presented at the American Psychiatric Association Annual Meeting May, 1997; San Diego, CA.Google Scholar
  13. Eisen S. A., Lin N., Lyons M. J., et al. (1998). Familial influences on gambling behavior: An analysis of 3359 twin pairs. Addiction; 93(9): 1375-1384.Google Scholar
  14. Eisen S. A., Slutske W. S., Lyons M. J., et al. (2001). The Genetics of Pathological Gambling. Seminars in Clinical Neuropsychiatry, 6(3): 195-204.Google Scholar
  15. Faraone S. V., Tsuang M. T., Tsuang D. W. (1999). Genetics of Mental Disorders. New York: The Guilford Press.Google Scholar
  16. Gambino B., Fitzgerald R., Shaffer H. J., et al. (1993). Perceived family history of problem gambling and scores on SOGS. Journal of Gambling Studies, 9: 169-184.Google Scholar
  17. Ibáñez A., Saiz J. (2000). La ludopatía: una “nueva” enfermedad. Barcelona: Masson, S. A.Google Scholar
  18. Ibáñez A., Blanco C., Moreyra P., Sáiz-Ruiz J. (2002). Gender differences in Pathological Gambling. The Journal of Clinical Psychiatry (in press).Google Scholar
  19. Ibáñez A., Pérez de Castro I., Fernández-Piqueras J., Sáiz-Ruiz J. (1998) Sex differences in pathological gambling genetic contribution. American Journal of Medical Genetics; 81(6): 523.Google Scholar
  20. Ibáñez A., Pérez de Castro I., Fernández-Piqueras J., Sáiz-Ruiz J. (1999). Tyrosine hydroxylase gene and pathological gambling: An association study. Molecular Psychiatry; 4(Suppl 1): S108-S109.Google Scholar
  21. Ibañez A., Perez de Castro I., Fernandez-Piqueras J., Blanco C., Saiz-Ruiz J. (2000a). Genetic association study between pathological gambling and DNA polymorphic markers at MAO-A and MAO-B genes. Molecular Psychiatry; 20: 105-109.Google Scholar
  22. Ibáñez A., Pérez de Castro I., Fernández-Piqueras J., Sáiz-Ruiz J. (2000b). Association between the low-functional MAO-A gene promoter and pathological gambling. American Journal of Medical Genetics; 96(4): 464-465.Google Scholar
  23. Ibáñez A., Blanco C., Donahue E., Lesieur, H. R. de Castro, I. P., Fernandez-Piqueras, J., and Sáiz-Ruiz, J. (2001). Psychiatric Comorbidity in Pathological Gamblers Seeking Treatment. The American Journal of Psychiatry; 158: 1733-1735.Google Scholar
  24. Ibáñez A., Blanco C., Saiz-Ruiz J. (2002a). Neurobiology and Genetics of Pathological Gambling. Psychiatric Annals; 32(3): 181-185.Google Scholar
  25. Lesieur H. R. The female pathological gambler. In: Eadington W. R. Ed. Gambling Research (Vol. 5). Bureau of Business & Economic Research, University of Nevada, Reno, 1988.Google Scholar
  26. Lesieur H. R., Blume S. B. (1987). The South Oaks Gambling Screen (SOGS): a new instrument for the identification of pathological gamblers. The American Journal of Psychiatry; 144(9): 1184-1188.Google Scholar
  27. Moreno I., Saiz-Ruiz J., López-Ibor J. J. (1991). Serotonin and gambling dependence. Human Psychopharmacology; 6: S9-S12.Google Scholar
  28. Perez de Castro I., Ibañez A., Torres P., Saiz-Ruiz J., Fernandez-Piqueras J. (1997). Genetic association study between pathological gambling and a functional DNA polymorphism at the D4 receptor. Pharmacogenetics; 7: 345-348.Google Scholar
  29. Pérez de Castro I., Ibáñez A., Sáiz-Ruiz J., Fernández-Piqueras J. (1999). Genetic contribution to pathological gambling: Association between a functional DNA polymorphism at the serotonin transporter gene (5-HTT) and affected males. Pharmacogenetics; 9: 397-400.Google Scholar
  30. Pérez de Castro I., Ibáñez A., Saiz-Ruiz J., Fernández-Piqueras J. (2002). “Concurrent positive association between Pathological Gambling and functional DNA polymorphisms at the MAO-A and the 5-HT transporter genes.” Molecular Psychiatry (in press).Google Scholar
  31. Potenza M. N. (2001). The neurobiology of pathological gambling. Seminars in Clinical Neuropsychiatry; 6(3): 217-226.Google Scholar
  32. Potenza M. N., Kosten T. R., Rounsaville B. J. (2001). Pathological gambling. JAMA; 286: 141-144.Google Scholar
  33. Roy A., Adinoff B., Roehrich L. et al. (1988). Pathological gambling: A psychobiological study. Archives of General Psychiatry; 45: 369-373.Google Scholar
  34. Slutske W. S., Eisen S., True W. R., Lyons M. J., Goldberg J., Tsuang M. (2000). Archives of General Psychiatry; 57(7): 666-673.Google Scholar
  35. Slutske W. S., Eisen S., Xian H., True W. R., Lyons M. J., Goldberg J., Tsuang M. (2001). A twin study of the relationship between pathological gambling and antisocial personality disorder. Journal of Abnormal Psychology; 110(2): 297-308.Google Scholar
  36. Sullivan P. F., Eaves L. J., Kendler K. S., Neale M. C. (2001). Genetic Case-Control Association Studies in Neuropsychiatry. Archives of General Psychiatry; 58: 1015-1024.Google Scholar
  37. Westlund K. N., Krakower T. J., Kwan S. W., Abell C. W. (1993). Intracellular distribution of monoamine oxidase-A in selected regions of rat and monkey brain and spinal cord. Brain Research; 612: 221-230.Google Scholar
  38. Winters K. C., Rich T. (1999). A twin study of adult gambling behavior. Journal of Gambling Studies; 14: 213-225.Google Scholar
L1 Dominette 01449, the Hereford who serves as the subject of the Bovine Genome Project

The genome of a female Hereford cow has been sequenced by the Bovine Genome Sequencing and Analysis Consortium, a team of researchers led by the National Institutes of Health and the U.S. Department of Agriculture.[1]It is one of the largest genomes ever sequenced.The results, published in the journal Science on April 24, 2009,[2] are likely to have a major impact on livestockbreeding.[3] They were obtained by more than 300 scientists in 25 countries after six years of effort.

The size of the bovine genome is 3 Gb (3 billion base pairs). It contains approximately 22,000 genes of which 14,000 are common to all mammalian species. Bovines share 80 percent of their genes with humans; cows are less similar to humans than rodents (humans and rodents belong to the clade of Supraprimates). They also have about 1,000 genes shared with dogs and rodents but not identified in humans.[4]

Gambling on genes to build a better cowboy

The charting of key DNA differences, also known as haplotypes, between several varieties of cattle could allow scientists to understand what is the role of some genes coding for products of economic value (milk, meat, leather). It opens new perspectives for enhancing selective breeding and changing certain cattle characteristics for the benefit of farmers.[5][6]

See also[edit]

  • Cattle
  • Genome

References[edit]

  1. ^Elsik, C.G. # (2009). Bovine Genome Sequencing and Analysis Consortium. 'The genome sequence of taurine cattle: a window to ruminant biology and evolution'. Science. 324 (5926): 522–528. doi:10.1126/science.1169588. PMC2943200. PMID19390049.
  2. ^'Science Podcast, 04/24/09 includes advances in livestock research including the sequencing of the cattle genome and insights into the history of sheep domestication'. Science. 24 April 2009. Retrieved 2009-04-26.
  3. ^Lewin, H.A. (2009). 'It's a bull's market'. Science. 324 (5926): 478–479. doi:10.1126/science.1173880. PMID19390037.
  4. ^'Cow genome unraveled in bid to improve meat, milk'. Associated Press. 2009-04-23. Archived from the original on 2012-03-20. Retrieved 2009-04-23.
  5. ^Gill, V. (23 April 2009). 'Cow genome 'to transform farming''. BBC News. Retrieved 2009-04-25.
  6. ^Gibbs, R.A. # (2009). Bovine HapMap Consortium. 'Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds'. Science. 324 (5926): 528–532. doi:10.1126/science.1167936. PMC2735092. PMID19390050.

External links[edit]

  • View the cow genome on Ensembl

Gambling On Genes To Build A Better Cowboy

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Bovine_genome&oldid=925105869'